Log-concavity of asymptotic multigraded Hilbert series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Log-concavity of Hilbert Series of Veronese Subrings and Ehrhart Series

For every positive integer n, consider the linear operator Un on polynomials of degree at most d with integer coefficients defined as follows: if we write h(t) (1−t)d+1 = P m≥0 g(m) t , for some polynomial g(m) with rational coefficients, then Un h(t) (1−t)d+1 = P m≥0 g(nm) t . We show that there exists a positive integer nd, depending only on d, such that if h(t) is a polynomial of degree at m...

متن کامل

Multigraded Hilbert Schemes

We introduce the multigraded Hilbert scheme, which parametrizes all homogeneous ideals with fixed Hilbert function in a polynomial ring that is graded by any abelian group. Our construction is widely applicable, it provides explicit equations, and it allows us to prove a range of new results, including Bayer’s conjecture on equations defining Grothendieck’s classical Hilbert scheme and the cons...

متن کامل

Hilbert Series and Obstructions to Asymptotic Semistability

Given a polarized manifold there are obstructions for asymptotic Chow semistability described as integral invariants. One of them is an obstruction to the existence for the first Chern class of the polarization to admit a constant scalar curvature Kähler (cscK) metric. A natural question is whether or not the other obstructions are linearly dependent on the obstruction to the existence of a csc...

متن کامل

Matroids and log-concavity

We show that f -vectors of matroid complexes of realizable matroids are strictly log-concave. This was conjectured by Mason in 1972. Our proof uses the recent result by Huh and Katz who showed that the coefficients of the characteristic polynomial of a realizable matroid form a log-concave sequence. We also prove a statement on log-concavity of h-vectors which strengthens a result by Brown and ...

متن کامل

Bell Numbers, Log-concavity, and Log-convexity

Let fb k (n)g 1 n=0 be the Bell numbers of order k. It is proved that the sequence fb k (n)=n!g 1 n=0 is log-concave and the sequence fb k (n)g 1 n=0 is log-convex, or equivalently, the following inequalities hold for all n 0, 1 b k (n + 2)b k (n) b k (n + 1) 2 n + 2 n + 1 : Let f(n)g 1 n=0 be a sequence of positive numbers with (0) = 1. We show that if f(n)g 1 n=0 is log-convex, then (n)(m) (n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2012

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2012-11808-8